MISSION OPERATIONS DIRECTORATE FLIGHT DIRECTOR OFFICE

STS-100/6A MISSION SUMMARY

FLIGHT READINESS REVIEW

April 5, 2001

DA8/P. L. Engelauf DA8/J. M. Curry

STS-100/6A Shuttle Overview

- OV-105 Endeavour
- Crew 6 US, 1 Russian
 (No crew exchange)
- Mission Duration 11+1+2
- 7 N2 tanks
- 5 Cryo Tanks sets
 - Cryo margins positive for 11+1+2 mission with ~101 hours pad hold, H2 limited.
- Two Planned EVAs, One unscheduled EVA
- Propellant acceptable. Fwd ~ 700 #, Aft ~ 3000# margin
- Shuttle reboost planned, to be performed from these margins

STS-100/6A Mission Summary

- Four primary objectives for STS-100, in priority order:
 - 1.) SSRMS Delivery and checkout
 - EVA Deployment and power connection/transfer
 - Critical path for airlock delivery on 7A
 - 2.) Delivery of critical consumable supplies from MPLM
 - 3.) Outfit US Lab with Express Racks and transfer Utilization Experiments
 - 2 Express racks
 - Resupply Stowage Racks, Resupply Stowage Platforms
 - Four powered payloads carried in shuttle middeck
 - 4.) Delivery of on-orbit spares
 - DC Switching Unit (DCSU)
 - Video Signal Conditioner (VSC)

STS-100/6A Critical Activities

To preserve the assembly sequence, 6A must achieve minimum functionality for the SSRMS to allow airlock placement on 7A

Activities required:

- Rendezvous/dock
- Transfer SLP to Lab and deploy SSRMS via EVA
- Walkoff' SSRMS onto Lab PDGF
- Transfer power from SLP to Lab PDGF*
 - Possible to do on Expedition EVA
- Berth MPLM and remove/install (critical) cargo
- Remove MPLM

This mission would require a minimum of 6 days (3 docked)

- FD1
 - Launch
- FD2
 - Activate and checkout OIUs
 - SRMS Checkout
 - EMU checkout
 - Activate and checkout Orbiter Docking System
 - OSVS Checkout
 - Orbiter Cabin depress to 10.2 psi

- Activate APCUs
- ISS Maneuver to Docking Attitude
- ISS Feather Solar Arrays for Docking (P6, FGB, SM)
- Perform +Vbar ISS rendezvous
- Dock Orbiter to PMA2
- Exchange key items via PMA2 (No Ingress)
 - To ISS:
 - RWS UOP Bypass Cables
 - Video Crosswire Cables
 - PCS Software Upgrade CD
 - CWC's, IMAX Film, ODF
 - From ISS:
 - Spare PGT For EVA

6A Docking to ISS

6A Initial Configuration

- SRMS transfer of SLP to Lab Cradle Assembly
- EVA 1
 - Connect power to SLP via J300 Umbilical, activate keep-alive power
 - Transfer ISS UHF antenna from SLP to Lab
 - Remove restraints (Superbolts) from SSRMS
 - Initial boom raise (manual)
 - Unfold boom segments and secure in onorbit configuration
- Raise SSRMS booms (Robotic)
 - When SSRMS reaches operational temp, use shoulder joint to raise booms
- Orbiter 14.7 psi Repress (During EVA)

6A after EVA 1/SSRMS Transfer

STS-100/6A Msn Summary

- Open Hatches (First full ingress this mission)
- SSRMS Initial checkout (Joint tests), Lab PDGF Grapple
- Install MPLM on Node Nadir using SRMS
- ISS crew performs MPLM vestibule outfitting/MPLM activation
- Close hatches, 10.2 depress

6A After MPLM Transfer

- ISS crew performs rack transfers from MPLM
- Shuttle crew EVA #2
 - J400 Power reconfig to power PDGF on Lab
 - Remove starboard Early Comm antenna from Node, VSC from SLP
 - Transfer DCSU to External Stowage Platform (ESP) on Lab
- Repress to 14.7, open hatches

6A after EVA 2

STS-100/6A Msn Summary 14

• FD7

- SSRMS 'Loaded Checkout' with SLP
- Handoff SLP to SRMS, berth in Shuttle PLB
- Powered payload transfers
- MPLM Transfers

• FD8

- EVA 3 if required; otherwise transfers, Additional SSRMs Checks
- SSRMS Airlock Installation Dry Run

- MPLM Vestibule Deoutfitting, depress, leak checks
- SSRMS Unloaded Dynamic Checkout
- MPLM stow in Orbiter Payload Bay
- Crew conference

• FD10

- Close Hatches
- Undock from PMA2, Flyaround (ICBC Filming), Separate
- Cabin Stow

• FD11

- FCS C/O, RCS Hot-fire, Cabin Stow
- Off duty for second half of day

- D/O Prep
- Landing 10/18:54

Undock/Flyaround Sequence

Dashed lines represent IMAX field of view (100mm lens)

STS-100/6A Msn Summary

Soyuz/STS-100 Launch Conflict Issues

Considerations Affecting the Choice Of STS-100 Launch Date

Current Plan

- The baseline plan for these launches:
 - 6A Shuttle launches on 4/19
 - 2Soyuz begins fueling and final irreversible launch processing after confirmation of 6A launch on 4/19
 - 6A Shuttle nominal undock on 4/28
 - 2Soyuz launches on 4/28 and docks to ISS on 4/30
- Considerations
 - Accommodates Russian request to avoid May Day holidays
 - If 6A undocks 4/28, crew will only have one day off vice 2 that are baselined between shuttle undocking and Soyuz docking
 - Regardless of the undocking day, the last crew off-duty time will have been half day on April 14 and half day on April 15 (i.e., will have worked 13-14 days continuous)

Shuttle Launch Considerations

- Shuttle Launch Constraints
 - Range unavailable May 11-19
 - Beta angle cutout May 18 June 7
 - No Arrivals/Departures during shuttle docked period
 - ISS Food depletion estimated June 1
 - Shuttle or Progress can resupply
 - Progress launch on May 20 is first flight of upgraded booster
- Soyuz Launch Constraints
 - New Soyuz (S2) Must Launch By May 11
 - Onorbit Soyuz 1 reaches 200 day Life Limit
 - S2 Arrival requires P3 undock, S1 flyaround to clear port
 - 2-day timeline impact
- Protecting two days between shuttle undocking and Soyuz docking is prudent

Mission Impacts of Options

- If STS-100 Launches before Soyuz 2:
 - PRO:
 - Maximizes Shuttle launch opportunities
 - Maximizes margin for ISS food resupply
 - Supported by existing flight products (flight plan, thermal analysis, etc.)

- CON

- Shuttle must stand down for Soyuz if not launched before Soyuz mandatory launch date
- Aggressive ISS crew schedule no rest between 6A and 2 Soyuz
- Reboost option constrained by Soyuz phasing requirements, however, reboost can still be performed

Mission Impacts of Options

- If Soyuz launches before STS-100
 - PRO
 - Minimizes impacts to ISS crew for 6A stage operations
 - Soyuz changeout and visiting crew activities 'out of the way' before 6A cargo and robotics operations
 - CON
 - Significant mission rework
 - Shuttle and ISS crew sleep cycles mismatched by ~ 6 hours due to shuttle planar launch window shift
 - May be able to minimize impact with descending landing opportunities
 - Must work around range availability and Beta constraints
 - Reduces overall number of shuttle launch attempts

Launch Option 1

- Current NASA Plan:
 - Protect Shuttle launch attempts from April 19 until May 1
 - If no launch by May 1, stand down for Soyuz launch on 10 May
 - Earliest Soyuz date if launch processing cannot start until shuttle launch/stand down decision
 - Soyuz slips day for day based on shuttle launch, or targets for May 10 a priori
 - Day for day slip minimizes time between STS-100 undock and S2 arrival, but maximizes Soyuz launch opportunity
 - May 10 target minimizes margin for onorbit 1Soyuz lifetime, but provides best possible ISS crew schedule

Launch Option 2

- Rosaviakosmos Plan
 - Soyuz 2 launch April 28, independent of shuttle launch slip
 - Protects Russian holidays May 1,2 and 9.
 - Accommodates shuttle launch only on April 19. April 20 launch would require mission duration constraints.
 - NASA position is that Soyuz docking with shuttle present is not allowed
 - Clearance concerns for FGB nadir approach
 - Loads assessment required for SM aft dockings
 - If shuttle does not launch on April 19, next window is post Soyuz 1 sep, May 6, until range cutout, May 10.
 - Assumes no Soyuz delay, or shuttle takes priority for May 6 date
 - Next opportunity is June 8

Summary

- The basic decision point is whether to launch STS-100 before the 2Soyuz or after
 - Before' maximizes shuttle launch opportunities (12) and resupply consumables margin, but complicates 6A stage crew ops
 - 'After' results in reduced shuttle launch opportunities (5) but simplifies stage operations
- If Soyuz does not move from April 28, need to decide whether to attempt April 19 or stand down to May 6
 - If no launch on April 19, still have the chance to make May 6-10
 - If no launch in May, slip until June 8